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1 Introduction

The article [1] makes important contributions to
the nonlocal nature of quantum mechanics and how
this nature can be demonstrated experimentally.
The following questions will help better understand
the basis of the subject:

1. What is the connection between the concepts
of quantum entanglement and Bell nonlocal-
ity?
When a particle with zero spin splits into
two, their total spin remains zero. Measur-
ing one particle affects the other’s state in-
stantly, demonstrating entanglement. The
EPR paradox [2] claims this violates locality
and suggests hidden variables. Bell’s experi-
ments proved no local hidden variables exist,
demonstrating Bell nonlocality. Bell inequal-
ities set limits on correlations; fully entangled
states can exceed these limits, violating Bell’s
inequality.

2. Do all entangled states lead to Bell inequality
violation?
If the entanglement is weak or the measure-
ments are not ideal, it does not lead to a vio-
lation of Bell’s inequalities. For instance, sit-
uations like partially entangled Werner states
or weakening of entanglement due to deco-
herence may not lead to a violation of Bell’s
inequalities.

3. What is local filtering, and how should it be
applied in the context of a test of Bell’s in-
equality?
Local filtering, is a process used in quantum
information theory that allows the extraction
of specific outcomes from measurements on a
quantum state [3]. To test of Bell’s inequal-
ity and reveal hidden nonlocality, the required
steps are explained in chapter 4.

4. What does it mean that certain entangled
state feature “hidden nonlocality”
After applying operations such as local fil-
tering to two entangled particles that ini-
tially do not violate Bell’s inequality, these
parts may subsequently violate Bell’s inequal-
ity. This demonstrates that a system initially
presenting local behavior can exhibit a non-

local nature through appropriate manipula-
tions. This phenomenon is known as hidden
nonlocality.

2 Nonlocality

Bell’s inequality [4] states that any local hidden
variable theory must satisfy a specific inequality
that sets a limit on the correlations between en-
tangled particles. This inequality is given by:

|E(A,B)− E(A,B′) + E(A′, B) + E(A′, B′)| ≤ 2

where E(A,B) is the expectation value of the prod-
uct of the outcomes when measurements A and B
are performed on the two particles.

2.1 Local Hidden Variable Theories

In local hidden variable theories, the outcome of a
measurement on one particle is determined by pre-
existing properties (hidden variables) and is not in-
fluenced by measurements performed on a distant
particle. Mathematically, this can be expressed as:

P (a, b|λ) = P (a|λ)P (b|λ)

where P (a, b|λ) is the joint probability of outcomes
a and b given hidden variable λ.

2.2 Quantum Mechanical Predic-
tions

Quantum mechanics states that entangled particles
can violate Bell’s inequality, leading to nonlocality,
which implies that the measurement on one particle
can instantaneously influence the state of another
particle regardless of the distance separating them.

The proposed paper focus on classify mixed
states into local or nonlocal, as for pure states the
problem is completely solved [5].

3 Werner Density Matrix

The density matrices used in the main article were
introduced by Werner[1]. He proposed a density
matrix W that, while not decomposable into a di-
rect product of pure states, did not violate standard
Bell inequality. Under a single ideal measurement,
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this state could be described by hidden variables
models, stated explicitly by Werner.

Popescu uses the following Werner state for di-
mensions d ≥ 5:

W =
1

d2

(
1

d
Id×d + 2Σi<j |Sij⟩⟨Sij |

)
Where

|Sij⟩ =
1√
2
(|i, j⟩ − |j, i⟩)

denotes the ”spin 1/2 singlet” state.

4 Proposed Measurement

To reveal hidden nonlocality, the following mea-
surement sequence is proposed:

1. Preparation of initial states: An entangled
quantum state is created that is shared be-
tween Alice and Bob (ie. Bell states).

2. Filtering process: After making initial mea-
surements on their own qubits, Alice and Bob
apply local filtering. The filtered density ma-
trix is defined as:

ρ̃ =
1

N

[
(FA ⊗ FB)ρ(F

†
A ⊗ F †

B)
]

where N = Tr
[
(FA ⊗ FB)ρ(F

†
A ⊗ F †

B)
]
is a

normalization factor, and FA and FB are pos-
itive operators acting on Cd representing the
local filtering of Alice and Bob [6].

3. Measurements: Further measurements on the
filtered state are used to verify the success of
the filtering process and to evaluate the ex-
tent to which the resulting quantum state vi-
olates the Bell inequality.

In this example, The author uses P and Q as
initial measurements, where P and Q are defined
as:

P = |1⟩11⟨1|+ |2⟩11⟨2|
Q = |1⟩22⟨1|+ |2⟩22⟨2|

Then, he performs new measurements, either A
or A′ for the first particle and B or B′ for the sec-
ond particle. All four operators have three eigen-
values: 1, -1, and 0. 1 and -1 have corresponding
eigenvectors in subspaces |1⟩1 , |2⟩1 and |1⟩2 , |2⟩2,
respectively. As for eigenvalue 0, it is highly de-
generate and corresponds to every other subspace.
Also, operators A, A′, B, and B′ are such operators
that maximally violate the CHSH inequality for the
singlet state:

⟨S12|AB +AB′ +A′B −A′B′ |S12⟩ = 2
√
2

By splitting the initial ensemble into subensem-
bles based on the outcomes of the initial projec-
tion measurements, the author shows that the cor-
relations in one of these subensembles can violate
the CHSH inequality. Specifically, for dimensions
d ≥ 5, the state W ′ formed after the initial projec-
tions violates the CHSH inequality, demonstrating
nonlocality:

W ′ =
1

N
(P ⊗Q)W (Q† ⊗ P †)

W ′ =
2d

2d+ 4

(
1

2d
I(2×2) + |S12⟩⟨S12|

)

Tr(W ′(AB+AB′+A′B−A′B′)) =
2d

2d+ 4
·2
√
2 ≥ 2

5 Conclusion

Determining the locality of quantum states is more
challenging than it initially appears. The paper
has demonstrated that certain states exhibit hid-
den nonlocality, which can only be revealed through
various different measurements. A single ideal mea-
surement is insufficient to detect locality; local
states must not violate Bell inequality, or any sim-
ilar inequalities, even after a sequence of non-ideal
measurements. Only when the correlations between
the results of any local experiments on the state can
be described by a local hidden variables model can
we definitively state that the state has no hidden
nonlocality.
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