
UNIGOU Remote 2022
Czech-Brazilian Academic Program

Solving the Travelling Salesman Problem on IBM
Quantum®

Natália Capra Ferrazzo

Institute of Physics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, natalia.ferrazzo@ufrgs.br.

Abstract. In this article, the basic concepts of Quantum Computing were studied and applied to

NP-hard Travelling Salesman problem. Through the tools provided by IBM Quantum and Qiskit

initiative, it was able to implement it via Python libraries and Jupyter Notebook. The results were

as computed for similar publications.

Keywords: NP-hard, Quantum computing, Travelling Salesman Problem

1. Introduction
As Richard Feynman highlighted, some quantum
mechanics effects, as superposition and
entanglement, can not be simulated efficiently on
classical computers [1], raising the conjecture that
computation can be done more efficiently if quantum
effects are used to perform it. Specifically, as
mentioned by Acompora et al. [2], Feynman
speculated that the synergistic usage of quantum
superposition and entanglement in computation may
enable the design of computing devices showing a
high degree of parallelism, which grows with the size
of the device itself, in an exponential way.

In this way, quantum computers are being used to
approach these kinds of problems using various
techniques, even though there are supercomputers
all over the world. It's because of the fact of what a
quantum computer can do over a classical computer,
using the weirdness of quantum mechanics and all
the different properties which only a quantum
computer can provide, and using algorithms
developed for quantum computer over the years.

Although the use of quantum computers doesn't
guarantee the problem will be solved, it still offers a
new way to approach problems of this class.

2. Basic Concepts
2.1 Qubits

Classical computing is based on bit: a binary digit that
can be in one of two mutual exclusive states, either 0
or 1. Quantum computing, otherwise, is based on
qubit: it can be in a quantum state that is a complex
linear superposition of 0 and 1, before being
measured. When it is measured, it ‘‘collapses” to one
of these two values, corresponding to classical bits.
When a qubit is in a super-position of states, it can be
said that it has an amplitude associated with each
state.

Formally, a qubit is represented by a unit vector, |𝜓⟩
of a two-dimensional Hilbert space:

|𝜓⟩ = α|0⟩ + β|1⟩

Where 𝛼, β ∈ ℂ and it’s normalized so:

|𝛼|2 + |𝛽|2 = 1

In this way, |𝛼|2 can be interpreted as the probability
of measuring |0⟩ and |𝛽|2 as the probability of
measuring |1⟩.

The |0⟩ and |1⟩ are the basis states of the Hilbert
space and can be represented by:

|0⟩ = (
1

0
)

|1⟩ = (
0

1
)

2.2 Bloch Sphere

There is an alternative representation that allows a
better visualization of a qubit – the so-called Bloch
Sphere. In order to design it, it’s needed to use the
following representation of a qubit, derived from the
polar form of complex numbers:

𝑐𝑜𝑠 (
𝜃

2
) |0⟩ + 𝑒𝑖𝜙𝑠𝑖𝑛 (

𝜃

2
) |1⟩

Fig 1. Bloch sphere

2.3 Quantum gates

The evolution of a closed quantum system is
described by special linear operators, unitary
operators U which operate on qubits as follows:

𝑈|𝜓⟩ = U[α|0⟩ + β|1⟩] = αU|0⟩ + βU|1⟩

The most common gate is the NOT-gate, or, in
quantum equivalence Pauli-X gate. It has the form of:

𝑋 = [
0 1
1 0

]

Suppose a qubit in state |𝜓⟩ = 1 ∙ |0⟩ + 0 ∙ |1⟩. If one
compute |𝜓′⟩ = 𝑋|𝜓⟩, gets:

|𝜓′⟩ = 1 ∙ [
0 1
1 0

] ∙ [
1
0

] ⊗ 0 ∙ [
0 1
1 0

] ∙ [
0
1

]

|𝜓′⟩ = [
0
1

]

The most interesting outcome of Pauli-X gate occurs
when it is applied to a qubit in superposition state. In
such case, it inverts the probability that the quantum
state will collapse to 0 or 1.

To create a superposition state, a Hadarmard gate
can be applied, the unitary operator is:

𝐻 =
1

√2
[
1 1
1 −1

]

Suppose, again, a qubit in state |𝜓⟩ = 1 ∙ |0⟩ + 0 ∙ |1⟩.
If one compute |𝜓′⟩ = 𝐻|𝜓⟩, gets:

|𝜓′⟩ =
1

√2
[
1 1
1 −1

] (1 ∙ [
1
0

] + 0 ∙ [
0
1

])

|𝜓′⟩ =
1

√2
[
1 1
1 −1

] [
1
0

]

|𝜓′⟩ = [
1 √2⁄

1 √2⁄
]

As one can see, after applying the quantum operator
H, the qubit will be in a superposition state:

|𝜓⟩ =
1

√2
∙ |0⟩ +

1

√2
∙ |1⟩

In this case, the probability that after measuring the
qubit, it will be found in state |0⟩ or |1⟩ is the same:
50%.

Fig 2. Hadamard gate applied to a qubit in state |0⟩: H|0⟩

Other interesting quantum gates are Rx, Ry and Rz,
because they allow a simple and direct modification
of the magnitude and phase.

Fig 3. Ry gate applied to a qubit in state |ψ⟩.

For example, Ry performs a single-qubit rotation
through angle  radians around the y-axis. The
unitary operator associated with the Ry gate is:

𝑅𝑦 (𝜃) = [
cos(

𝜃

2
) −sin(

𝜃

2
)

sin(
𝜃

2
) cos(

𝜃

2
)

]

The Ry rotation mainly acts on the magnitude knob of
qubit. Thus, this gate modifies the probability that a
qubit in state |𝜓⟩ will collapse to 1 or 0, after
measuring it. Fig 3 shows an example of the
application of the gate Ry(𝜋

2
) to a generic quantum

state |𝜓⟩.

A very special phenomenon takes place when a
quantum device has access to more than one qubit:
entanglement.

One can get an entangled state by applying a
Hadamard gate followed by a CNOT gate, which
operator is given by:

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

]

The CNOT gate operates on two qubits, a control
qubit and a target qubit, and it works as it: apply the
logical NOT operation to the target qubit only if the
control qubit has the value 1.

So, if a Hadamard gate is applied in q0 and then a
CNOT whit a control qubit as q0 and target as q1, an
entanglement state is created.

The result is a superposition of |00⟩ and |11⟩, which
cannot be represented as two separated qubits
anymore: they are entangled. In other words, the
value of q1 is completely connected to the quantum
measurement on q0.

3. IBM Quantum®
IBM provides some useful tools for quantum
computing. In this report, IBM Quantum lab was used
for implementing all the algorithms, and an
introduction for each tool is provided below.

3.1 IBM Quantum Composer®

One can easily graphically build quantum circuits
with IBM Quantum Composer. It allows users to
dynamically see some useful circuit properties like
the outcome probabilities of measurement,
statevectors, phase and Q-sphere. In addition, it
provides the Qiskit/Python implementation for the
currently circuit.

3.2 IBM Quantum Lab®

This toolkit provides a collection of Jupyter
Notebooks tutorials created by Qiskit® team. Also,
one can creates its own notebook directly in this
pane.

4. Travelling Salesman
Problem

The Travelling Salesman Problem (TSP) belongs to
the class of NP-Hard problems in combinatorial
optimization. The problem is:

"Given a list of cities and the distances between each
pair of cities, what is the shortest possible route that
visits each city exactly once and returns to the origin
city?"

Fig 4. TSP graph representation: The letters represent cities,
and the lines values are the distances between them.

The Travelling salesman problem is very important
in theoretical computer science. Community has
been trying to find an algorithm which can solve it in
polynomial time. The reason of its importance is not
specifically TSP, but instead the class to which TSP
belongs to. It’s the NP class. If one can find an
algorithm for TSP, it will open a wide range of
possibilities for the thousands of other problems
which belongs to the same class.

The TSP problem is similar to the Hamiltonian cycle
problem, as follows:

"The cycle of visiting each vertex once in a graph and
returning to the starting vertex is known as a
Hamiltonian cycle. Given a graph, determine whether
it contains a Hamiltonian cycle or not."

As the Hamiltonian cycle is at the heart of the TSP,
these two problems are interconnected and solving
one will solve the other.

5. Methodology
To solve TSP, one can consider the whole problem in
terms of graphs. The cities are represented as
vertices, and the cost/path as edges.

· The problem is approached by encoding the given
distances/cost between the cities as phases.

· Each city is connected to other cities with a
specific cost associated to each connection.

· Unitary operators are constructed whose
eigenvectors are the computational basis states
and eigenvalues are various combinations of
these phases.

· Then its applied phase estimation algorithm to
certain eigenstates which gives all the total
distances possible for all the routes.

· After obtaining the distances, a search is made
through this information using the quantum
search algorithm to find the least possible
distance as well the route taken.

This approach provides a quadratic speedup over the
classical brute force method for a large number of
cities.

Fig 5. Hamiltonian cycle representation with 4 nodes.

5.1 Phase Estimation

The quantum phase estimation algorithm uses phase
kickback to write the phase of U to the t qubits. When
a qubit is used to control the U gate, the qubit will
turn proportionally to the phase 𝑒2𝑖𝜋𝜃 . It’s needed to
introduce the controlled unitary – CU – that applies
the unitary operator U on the target register only if
its corresponding control qubit is |1⟩. So, it’s needed
to decompose these unitaries as controlled unitaries.
As follows:

𝑈1, 𝑈2, 𝑈3, 𝑈4 → 𝐶𝑈1, 𝐶𝑈2, 𝐶𝑈3, 𝐶𝑈4

𝑈𝑗 = [

𝑒𝑖𝑎 0
0 𝑒𝑖𝑏

0 0
0 0

0 0
0 0

𝑒𝑖𝑐 0
0 𝑒𝑖𝑑

]

The eigenvalues of this unitary matrix U are
estimated using the quantum phase estimation
algorithm.

The phases can be normalized to be bound within 0
and 2π once the range of distances between the cities
is known.

U is a diagonal matrix since it is a tensor product of n
diagonal matrices. This means that the eigenstates of
this matrix U are computational basis states with
eigenvalues as the corresponding diagonal elements.

The eigenstates are represented in binary form to
convert the city to computational basis vectors using
a function:

|𝜓⟩ = ⨂𝑗|i(j) − 1⟩ where j ∈ [1 ⋯ n]

where the function i(j) corresponds to “from which
city the salesman travelled to city j”?

5.2 Eigenstates

With 4 cities taken, the total combination of all
possible Hamiltonian cycle is 𝒏 = 𝟒! = 𝟐𝟒. Out of
these 24, 6 are distinct Hamiltonian cycle.

We are taking the first 6 states, since these states on
different circular permutations will give all the
states:

Tab 1. Possible distinct states

In the binary form, they assume the form:

Tab 2. Eigenstates in binary form

Considering the same cost from going and returning,
there will be 3 sequence paths out of 6. For example,
we can take any one of 1−2−3−4 or 1−2−4−3, since
cost from 3−4 will be the same as 4−3. So, these 6 will
reduce to:

Tab 3. Eigenstates reduced

6. Results
The phases are normalized to be bound within [0, 2π]
once the range of distances between the cities are
known.

Tab 4. Phases normalized

The circuit was built and drawn in a Jupyter
Notebook.

Fig 6. Circuit Implemented - Part 1

Fig 7. Circuit implemented - Part 2

And the result was computed. The number of shots
taken was 8129 and in 100% of it, the result was the
same: |100100⟩.

Fig 8. Final measurement.

7. Discussion
This process must be done for all the eigenstates to
find the total distance for all the routes. After that,
one can use quantum search algorithms to find the
minimum of those distances. Thus, the time required
scales with the number of eigenstates.

The paper token as reference for this has many
circuit errors. They were fixed and the improved
version was used.

A good question must be - Does using this process of
quantum phase estimation to solve a problem of NP-
Hard give a more efficient and optimal algorithm to
solve these kinds of problems? No. This process of
using phase estimation, which encode the cost as
phases is one of the many ways to solve this category
of problems. In this process, it was found all the
possible Hamiltonian cycle in the graph and based on
those cycle, the total cost was calculated. But finding
all Hamiltonian cycle of a graph is itself a NP-
Complete problem. It was used precomputed

Hamiltonian cycle in the beginning to get the
eigenstates. And just 4 nodes/cities were used, but
for large number of cities, finding all possible
Hamiltonian cycle is an extensive work.

8. Conclusion
As mentioned by Srinivasan et al. [4], using the
proposed algorithm, it was able to create a database
of all possible routes that can be taken along with the
distance of each. If one devises a quantum algorithm
to find the minimum element in an unsorted array,
which is faster than the one it’s currently used, then
one can use that algorithm to find the minimum. This
gives this algorithm flexibility, which then can be
exploited in the future to solve the travelling
salesman problem much more efficiently. Even
though this algorithm deals with a very general case,
there are certain cases which cannot be directly
solved using it. These are the cases where there are
restrictions on routes connecting cities. For instance,
city b does not have a route connecting it to city d.
This can be thought of as the distance between those
cities being infinite. Since this algorithm requires
distances that can be normalized such that the total
distance for the longest route is less than 2π, this
does not bode well for it.

9. References
[1] R.P. Feynman, Simulating physics with
computers, Int. J. Theor. Phys. 21 (6) (1982) 467–
488.

[2] G. Acampora and A. Vitiello. Implementing
evolutionary optimization on actual quantum
processors, Int. N. Fisica Nucleare. (2021).

[3] P.W. Shor, Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26 (5) (1997) 1484–
1509.

[4] Karthik Srinivasan, Saipriya Satyajit, Bikash
K Behera, and Prasanta K Panigrahi. Efficient
quantum algorithm for solving travelling salesman
problem: An IBM quantum experience.
arXiv:1805.10928v1, 2018.

[5] Adriano Barenco, Charles H. Bennett,
Richard Cleve, David P. DiVincenzo, Norman
Margolus, Peter Shor, Tycho Sleator, John Smolin,
Harald Weinfurter. Elementary gates for quantum
computation. arXiv:9503016v1, 1995.

[6] Qiskit Textbook. Solving the Travelling
Salesman Problem using Phase Estimation. Avaliable
on: https://qiskit.org/. Access date: Apr, 14th 2022.

	1. Introduction
	2. Basic Concepts
	2.1 Qubits
	2.2 Bloch Sphere
	2.3 Quantum gates

	3. IBM Quantum®
	3.1 IBM Quantum Composer®
	3.2 IBM Quantum Lab®

	4. Travelling Salesman Problem
	5. Methodology
	5.1 Phase Estimation
	5.2 Eigenstates

	6. Results
	7. Discussion
	8. Conclusion
	9. References

