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Abstract. In this article, the basic concepts of Quantum Computing were studied and applied to 

NP-hard Travelling Salesman problem. Through the tools provided by IBM Quantum and Qiskit 

initiative, it was able to implement it via Python libraries and Jupyter Notebook. The results were 

as computed for similar publications. 
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1. Introduction 
As Richard Feynman highlighted, some quantum 
mechanics effects, as superposition and 
entanglement, can not be simulated efficiently on 
classical computers [1], raising the conjecture that 
computation can be done more efficiently if quantum 
effects are used to perform it. Specifically, as 
mentioned by Acompora et al. [2], Feynman 
speculated that the synergistic usage of quantum 
superposition and entanglement in computation may 
enable the design of computing devices showing a 
high degree of parallelism, which grows with the size 
of the device itself, in an exponential way. 

In this way, quantum computers are being used to 
approach these kinds of problems using various 
techniques, even though there are supercomputers 
all over the world. It's because of the fact of what a 
quantum computer can do over a classical computer, 
using the weirdness of quantum mechanics and all 
the different properties which only a quantum 
computer can provide, and using algorithms 
developed for quantum computer over the years.  

Although the use of quantum computers doesn't 
guarantee the problem will be solved, it still offers a 
new way to approach problems of this class. 

 

 

 

 

 

2. Basic Concepts 
2.1 Qubits 

Classical computing is based on bit: a binary digit that 
can be in one of two mutual exclusive states, either 0 
or 1. Quantum computing, otherwise, is based on 
qubit: it can be in a quantum state that is a complex 
linear superposition of 0 and 1, before being 
measured. When it is measured, it ‘‘collapses” to one 
of these two values, corresponding to classical bits. 
When a qubit is in a super-position of states, it can be 
said that it has an amplitude associated with each 
state. 

Formally, a qubit is represented by a unit vector, |𝜓⟩ 
of a two-dimensional Hilbert space: 

|𝜓⟩ = α|0⟩ + β|1⟩ 

Where 𝛼, β ∈ ℂ and it’s normalized so: 

|𝛼|2 + |𝛽|2 = 1 

In this way,  |𝛼|2 can be interpreted as the probability 
of measuring |0⟩ and |𝛽|2 as the probability of 
measuring |1⟩. 

The |0⟩ and |1⟩ are the basis states of the Hilbert 
space and can be represented by: 

|0⟩ =  (
1

0
) 

|1⟩ =  (
0

1
) 

  



 

2.2 Bloch Sphere 

There is an alternative representation that allows a 
better visualization of a qubit – the so-called Bloch 
Sphere. In order to design it, it’s needed to use the 
following representation of a qubit, derived from the 
polar form of complex numbers: 

𝑐𝑜𝑠 (
𝜃

2
) |0⟩  +  𝑒𝑖𝜙𝑠𝑖𝑛 (

𝜃

2
) |1⟩  

 

Fig 1. Bloch sphere 

2.3 Quantum gates 

The evolution of a closed quantum system is 
described by special linear operators, unitary 
operators U which operate on qubits as follows: 

𝑈|𝜓⟩ = U[α|0⟩ + β|1⟩] =  αU|0⟩ + βU|1⟩ 

The most common gate is the NOT-gate, or, in 
quantum equivalence Pauli-X gate. It has the form of: 

𝑋 =  [
0 1
1 0

] 

Suppose a qubit in state |𝜓⟩ = 1 ∙ |0⟩ + 0 ∙ |1⟩. If one 
compute |𝜓′⟩ = 𝑋|𝜓⟩, gets: 

|𝜓′⟩ =  1 ∙ [
0 1
1 0

] ∙ [
1
0

]  ⊗  0 ∙ [
0 1
1 0

] ∙ [
0
1

]  

|𝜓′⟩ = [
0
1

]  

The most interesting outcome of Pauli-X gate occurs 
when it is applied to a qubit in superposition state. In 
such case, it inverts the probability that the quantum 
state will collapse to 0 or 1.  

To create a superposition state, a Hadarmard gate 
can be applied, the unitary operator is: 

𝐻 =  
1

√2
[
1 1
1 −1

] 

Suppose, again, a qubit in state |𝜓⟩ = 1 ∙ |0⟩ + 0 ∙ |1⟩. 
If one compute |𝜓′⟩ = 𝐻|𝜓⟩, gets: 

|𝜓′⟩ =  
1

√2
[
1 1
1 −1

] (1 ∙ [
1
0

] +  0 ∙ [
0
1

]) 

|𝜓′⟩ =  
1

√2
[
1 1
1 −1

] [
1
0

] 

|𝜓′⟩ =  [
1 √2⁄

1 √2⁄
] 

As one can see, after applying the quantum operator 
H, the qubit will be in a superposition state: 

|𝜓⟩ =
1

√2
∙ |0⟩ +

1

√2
∙ |1⟩ 

In this case, the probability that after measuring the 
qubit, it will be found in state |0⟩ or |1⟩  is the same: 
50%. 

 

Fig 2. Hadamard gate applied to a qubit in state |0⟩: H|0⟩ 

Other interesting quantum gates are Rx, Ry and Rz, 
because they allow a simple and direct modification 
of the magnitude and phase. 

 

Fig 3. Ry gate applied to a qubit in state |ψ⟩. 

For example, Ry performs a single-qubit rotation 
through angle  radians around the y-axis. The 
unitary operator associated with the Ry gate is: 

𝑅𝑦 (𝜃) =  [
cos(

𝜃

2
) −sin(

𝜃

2
)

sin(
𝜃

2
) cos(

𝜃

2
)

] 

The Ry rotation mainly acts on the magnitude knob of 
qubit. Thus, this gate modifies the probability that a 
qubit in state |𝜓⟩ will collapse to 1 or 0, after 
measuring it. Fig 3 shows an example of the 
application of the gate Ry(𝜋

2
) to a generic quantum 

state |𝜓⟩. 

A very special phenomenon takes place when a 
quantum device has access to more than one qubit: 
entanglement. 

One can get an entangled state by applying a 
Hadamard gate followed by a CNOT gate, which 
operator is given by: 

𝐶𝑁𝑂𝑇 =  [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] 



 

The CNOT gate operates on two qubits, a control 
qubit and a target qubit, and it works as it: apply the 
logical NOT operation to the target qubit only if the 
control qubit has the value 1. 

So, if a Hadamard gate is applied in q0 and then a 
CNOT whit a control qubit as q0 and target as q1, an 
entanglement state is created. 

 

The result is a superposition of |00⟩ and |11⟩, which 
cannot be represented as two separated qubits 
anymore: they are entangled. In other words, the 
value of q1 is completely connected to the quantum 
measurement on q0.  

3. IBM Quantum® 
IBM provides some useful tools for quantum 
computing. In this report, IBM Quantum lab was used 
for implementing all the algorithms, and an 
introduction for each tool is provided below. 

3.1 IBM Quantum Composer® 

One can easily graphically build quantum circuits 
with IBM Quantum Composer. It allows users to 
dynamically see some useful circuit properties like 
the outcome probabilities of measurement, 
statevectors, phase and Q-sphere. In addition, it 
provides the Qiskit/Python implementation for the 
currently circuit. 

3.2 IBM Quantum Lab® 

This toolkit provides a collection of Jupyter 
Notebooks tutorials created by Qiskit® team. Also, 
one can creates its own notebook directly in this 
pane. 

4. Travelling Salesman 
Problem 

The Travelling Salesman Problem (TSP) belongs to 
the class of NP-Hard problems in combinatorial 
optimization. The problem is: 

"Given a list of cities and the distances between each 
pair of cities, what is the shortest possible route that 
visits each city exactly once and returns to the origin 
city?" 

 

Fig 4. TSP graph representation: The letters represent cities, 
and the lines values are the distances between them. 

The Travelling salesman problem is very important 
in theoretical computer science. Community has 
been trying to find an algorithm which can solve it in 
polynomial time. The reason of its importance is not 
specifically TSP, but instead the class to which TSP 
belongs to. It’s the NP class. If one can find an 
algorithm for TSP, it will open a wide range of 
possibilities for the thousands of other problems 
which belongs to the same class.  

The TSP problem is similar to the Hamiltonian cycle 
problem, as follows: 

"The cycle of visiting each vertex once in a graph and 
returning to the starting vertex is known as a 
Hamiltonian cycle. Given a graph, determine whether 
it contains a Hamiltonian cycle or not." 

As the Hamiltonian cycle is at the heart of the TSP, 
these two problems are interconnected and solving 
one will solve the other. 

5. Methodology 
To solve TSP, one can consider the whole problem in 
terms of graphs. The cities are represented as 
vertices, and the cost/path as edges. 

· The problem is approached by encoding the given 
distances/cost between the cities as phases. 

· Each city is connected to other cities with a 
specific cost associated to each connection. 

· Unitary operators are constructed whose 
eigenvectors are the computational basis states 
and eigenvalues are various combinations of 
these phases. 

· Then its applied phase estimation algorithm to 
certain eigenstates which gives all the total 
distances possible for all the routes. 

· After obtaining the distances, a search is made 
through this information using the quantum 
search algorithm to find the least possible 
distance as well the route taken. 

This approach provides a quadratic speedup over the 
classical brute force method for a large number of 
cities. 



 

 

Fig 5. Hamiltonian cycle representation with 4 nodes. 

5.1 Phase Estimation 

The quantum phase estimation algorithm uses phase 
kickback to write the phase of U to the t qubits. When 
a qubit is used to control the U gate, the qubit will 
turn proportionally to the phase 𝑒2𝑖𝜋𝜃 . It’s needed to 
introduce the controlled unitary – CU – that applies 
the unitary operator U on the target register only if 
its corresponding control qubit is |1⟩. So, it’s needed 
to decompose these unitaries as controlled unitaries. 
As follows: 

𝑈1, 𝑈2, 𝑈3, 𝑈4 → 𝐶𝑈1, 𝐶𝑈2, 𝐶𝑈3, 𝐶𝑈4 

𝑈𝑗 =  [

𝑒𝑖𝑎 0
0 𝑒𝑖𝑏

0    0
0    0

0   0
0   0

𝑒𝑖𝑐  0
0 𝑒𝑖𝑑

] 

The eigenvalues of this unitary matrix U are 
estimated using the quantum phase estimation 
algorithm. 

The phases can be normalized to be bound within 0 
and 2π once the range of distances between the cities 
is known. 

U is a diagonal matrix since it is a tensor product of n 
diagonal matrices. This means that the eigenstates of 
this matrix U are computational basis states with 
eigenvalues as the corresponding diagonal elements. 

The eigenstates are represented in binary form to 
convert the city to computational basis vectors using 
a function: 

|𝜓⟩ = ⨂𝑗|i(j) − 1⟩      where j ∈ [1 ⋯ n] 

where the function i(j) corresponds to “from which 
city the salesman travelled to city j”? 

 

 

 

 

 

 

5.2 Eigenstates 

With 4 cities taken, the total combination of all 
possible Hamiltonian cycle is 𝒏 = 𝟒! = 𝟐𝟒. Out of 
these 24, 6 are distinct Hamiltonian cycle. 

We are taking the first 6 states, since these states on 
different circular permutations will give all the 
states: 

 

Tab 1. Possible distinct states 

In the binary form, they assume the form: 

 

Tab 2. Eigenstates in binary form 

Considering the same cost from going and returning, 
there will be 3 sequence paths out of 6. For example, 
we can take any one of 1−2−3−4 or 1−2−4−3, since 
cost from 3−4 will be the same as 4−3. So, these 6 will 
reduce to: 

 

Tab 3. Eigenstates reduced 

 

  



 

6. Results 
The phases are normalized to be bound within [0, 2π] 
once the range of distances between the cities are 
known. 

 

Tab 4. Phases normalized 

The circuit was built and drawn in a Jupyter 
Notebook. 

 

Fig 6. Circuit Implemented - Part 1 

 

Fig 7. Circuit implemented - Part 2 

And the result was computed. The number of shots 
taken was 8129 and in 100% of it, the result was the 
same: |100100⟩. 

 

Fig 8. Final measurement. 

7. Discussion 
This process must be done for all the eigenstates to 
find the total distance for all the routes. After that, 
one can use quantum search algorithms to find the 
minimum of those distances. Thus, the time required 
scales with the number of eigenstates. 

The paper token as reference for this has many 
circuit errors. They were fixed and the improved 
version was used. 

A good question must be - Does using this process of 
quantum phase estimation to solve a problem of NP-
Hard give a more efficient and optimal algorithm to 
solve these kinds of problems? No. This process of 
using phase estimation, which encode the cost as 
phases is one of the many ways to solve this category 
of problems. In this process, it was found all the 
possible Hamiltonian cycle in the graph and based on 
those cycle, the total cost was calculated. But finding 
all Hamiltonian cycle of a graph is itself a NP-
Complete problem. It was used precomputed 



 

Hamiltonian cycle in the beginning to get the 
eigenstates. And just 4 nodes/cities were used, but 
for large number of cities, finding all possible 
Hamiltonian cycle is an extensive work. 

8. Conclusion 
As mentioned by Srinivasan et al. [4], using the 
proposed algorithm, it was able to create a database 
of all possible routes that can be taken along with the 
distance of each. If one devises a quantum algorithm 
to find the minimum element in an unsorted array, 
which is faster than the one it’s currently used, then 
one can use that algorithm to find the minimum. This 
gives this algorithm flexibility, which then can be 
exploited in the future to solve the travelling 
salesman problem much more efficiently. Even 
though this algorithm deals with a very general case, 
there are certain cases which cannot be directly 
solved using it. These are the cases where there are 
restrictions on routes connecting cities. For instance, 
city b does not have a route connecting it to city d. 
This can be thought of as the distance between those 
cities being infinite. Since this algorithm requires 
distances that can be normalized such that the total 
distance for the longest route is less than 2π, this 
does not bode well for it.  
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